Generative AI & AI Agents

Prerequisites:  

  • Proficiency in Python (functions, OOP, error handling), Familiarity with Jupiter notebooks, VS Code. 
  • Understanding of Basic Machine learning: Supervised and unsupervised learning, Training vs testing, Overfitting, under fitting, accuracy, loss. 
  • NLP Basics. 
  • Understanding of APIs and RESTful Services: Making HTTP requests with tools like requests, Postman, or using Open AI APIs, Handling JSON data.
  • Basic usage of Git for versioning and project management

Module 1: Introduction to generative AI 

  • Applications and impact of Generative AI
  • Evolution and Architecture of Generative AI
  • How does LLM work? 
  • Different types of Generative AI 
  • Text generation 
  • Image generation 
  • Audio and speech recognition 
  • Multi-modality 

 

Module 1.1: Foundation Models and Transformers 

  • What are Foundation Models? 
  • Transformer architecture (attention mechanism, encoder-decoder) 
  • Pre training vs Fine tuning 
  • Open-source vs closed-source LLMs (LLaMA, Mistral, Claude, GPT, etc.) 
  • Hans-on: Load and infer with Hugging Face models (e.g., BERT, GPT-2) 

 

Module 2: Prompt Engineering, RAG and Lang chain 

    • Introduction to Prompt Engineering
    • How Tokenization work? 
    • Necessity of Prompt Engineering 
    • Basic Prompt Structure 
    • Prompt design (zero-shot, few-shot, chain of thought) 
    • Clear and direct instructions 
    • Assigning Roles (Role Prompting) 
    • Splitting Data from Instructions 
    • Formatting Output using prompt 
    • Step by step using Precognition 
    • Using Examples in prompt 
    • How to Avoid Hallucinations 
  • Project: Building Complex Prompts (Industry Use Cases) 
  • Project: Compare outputs from different LLMs on same prompt 
  • Role of system prompts 
  • RAG architecture 
  • Vector databases: FAISS, Chroma, Weaviate 
  • Lang Chain, LlamaIndex overview 
  • Embedding vs Image generation vs Text and Code generation
  • How to improve LLM results? 
  • Prompt Engineering with Context 
  • Retrieval Augmented Generation (RAG) 
  • Fine-tuned model 
  • Trained model 

 

  • How does it relate to RAG, GraphRAG, KAG, and CAG 
  • Introduction to Lang Chain 
  • Choose the best foundation model for your needs 
  • Explain ability and Interpretability 
  • Hands-on: Build a RAG chatbot using OpenAI + FAISS + LangChain 

 

Module 3: Generative AI on Cloud 

  • Choose from leading Foundation models 
  • AI21: Jamba, Jurassic 
  • Amazon: Titan Models 
  • Anthropic: Claude Models 
  • Cohere: Command Models 
  • Meta: Llama 
  • Mistral AI 
  • Stability AI Models 
  • Open AI Models 
  • DeepSeek 
  • Google Gemini models 
  • Hugging Face models 
  • Model Hyper parameter Configurations 
  • AWS for Generative AI 
  • Getting started with Amazon Bedrock 

 

  • Experiment with Foundation models for different tasks 
  • Chat/text playground 
  • Image playground 
  • Privately customize FMs with your data 
  • Amazon Bedrock Converse API 
  • Amazon Q – Generative AI Assistant

 

  • Amazon Q Business 
  • Amazon Q Developer 
  • Amazon Sage Maker for Generative AI 

 

  • Sage Maker JumpStart pre-trained models
  • Google AI Studio and Gemini API 
  • Google AI Studio Introduction 
  • Gemini API Overview 
  • Google Ai Studio playground

 

  • AI Playground Chat Audio Docs & Images 
  • Real-Time Streaming Audio & Video 
  • Vertex AI Studio 

 

  • Vertex AI Studio Getting Started 
  • Real-time Media Studio & Streaming 
  • Prompt Management Gallery & Optimization 
  • Model Tuning & Customization 
  • Agent Builder 

 

  • Agent Garden 
  • Agent Engine 
  • RAG Engine 
  • Vertex AI Search 
  • Vector Search 
  • Vertex AI Model Garden Foundation Models 

 

  • Azure for Generative AI: Azure AI Foundry  Getting started with Azure AI Foundry
  • Understanding RBAC Roles in Azure AI Foundry Understanding Azure AI Foundry resources
  • AI project 
  • AI hub 
  • AI Services
  • Azure OpenAI Service 
  • Azure AI Model Catalog Discover and Deploy AI Models 
  • AI Playground Experiment, Customize & Build 
  • Azure AI Agent Secure & Scalable Enterprise Automation 
  • Fine-Tune AI Models with Your Data 
  • Prompt Flow Build & Refine AI Workflows 
  • Tracing & Evaluation Debug and Optimize AI Performance 
  • AI Safety & Security Build with Confidence 

 

Module 3.1: Text generation on AWS and GCP 

  • Amazon Bedrock Text Generation 
  • Hands-on:  Text Generation 
  • Leverage Amazon Bedrock to generate high-quality and contextually relevant text. 
  • Hands-on: Bedrock model for code generation 
  • Using Claude models for code generation 
  • Hands-on:  Text Summarization 
  • Utilize Titan and Claude models to distill complex information into concise summaries. 
  • Hands-on: Question Answering (QnA) 
  • Build intelligent QnA systems with the capabilities of the Titan model. 
  • Hands-on: Entity Extraction 
  • Master advanced techniques for extracting critical entities from text. 
  • Azure AI Foundry text generation 
    • Azure Authentication & Environment Setup 
    • Understanding AI Project Client 
    • Azure AI Foundry Quick Start Guide 
  • Project: Chat Completions with AI Project Client 
  • Project: Getting started with Text Embeddings models 
  • AI Foundry Prompt Template 
  • Phi-4 Model with AI Project Client 
  • Hands-on: Building Advanced Chat Systems with Phi-4
  • Azure OpenAI Studio 

 

  • Azure OpenAI Chat on Private Data with LangChain 
  • Azure OpenAI Q&A with Semantic Search Using LlamaIndex
  • Google AI Studio text generation 
  • Text Generation from Text-Only Inputs 
  • Generate Content from Combined Text & Images 
  • Real-Time Text Streaming 
  • Hands-on: Build Interactive Chat Experiences 
  • Handling Long Contexts with Gemini 
  • Executing Code with Gemini Basics 
  • Producing Structured Responses with the Gemini API 
  • Gemini 2.0 Rapid Reasoning & Multi-Turn Dialogues 
  • Live Multimodal API Implementation 
  • Introduction to Function Execution with the Gemini API 

 

Module 3.2: RAG with AWS, Azure and GCP 

  • Hands-on: Amazon Bedrock Knowledge Bases and RAG ○ Managed RAG 
  • Retrieve and generate using managed RAG services.
  • LangChain RAG 
  • Implement RAG workflows using LangChain for retrieval and generation. 
  • Hands-on: Azure AI Foundry RAG 
  • Azure AI Search for RAG-Powered Applications 
  • Embeddings Model for RAG-Based Architecture 
  • Embedding, Storing & Chatting with Docs in Azure AI Search 
  • Bing Grounding: Enhance AI with Web Search Context
  • Hands-on: Vertex AI & Google AI Studio for RAG Solutions 
  • RAG architecture using Vertex AI 
  • Google Search Grounding: Enrich AI with Real-Time Context 
  • Enhance AI with Google Search Suggestions 
  • Vertex AI RAG Engine 

 

Module 4: Image generation and multimodal models 

 

  • Bedrock Titan Image Generator 
  • Generate high-quality images using Bedrock Titan.

 

  • Project: Bedrock Amazon Nova 
  • Create detailed videos with the power of Amazon Nova Foundation Models 

 

  • Project: Bedrock Titan Multimodal Embeddings 
  • Leverage Titan Multimodal embeddings for advanced multimodal AI tasks. 

 

  • Google AI Studio 
    • Imagen 3 in Gemini API 
    • Imagen Model Parameters Overview 
    • Handling Image & Base64 Inputs with Gemini 
    • Video & Text Prompting: Transcription & Visual Descriptions 
    • Google’s Veo 2 and Veo 3 
  • Project: Getting started with Google’s Veo 2 

 

  • Azure AI Foundry 
    • Azure AI Foundry Image Generation Capabilities 
    • Embed Images with Azure AI Foundry 
  • Project: Getting Started with OpenAI DALL·E 3 for Image Generation 

 

Module 5: Customizing models via fine tuning 

 

  • Model Customization Techniques in Amazon Bedrock 
  • Fine-tuning options in Amazon Bedrock. 
  • Data preparation 
  • Customizing hyper parameters 
  • Fine-Tuning & Retrieve Custom Model 
  • Invoke Custom Model 

 

  • Project: Fine-Tuning with the Gemini API 
  • Fine-Tuning Process in Google AI Studio 
  • Advanced Tuning Settings with the Gemini API 
  • Fine-tune models with Azure AI Foundry 
  • LoRA (Low-Rank Adaptation) and QLoRA for parameter-efficient tuning 
  • PEFT (Parameter-Efficient Fine-Tuning) techniques 

 

Module 6: Ai Agents 

    • Introduction AI Agents 
    • The Importance of AI Agents 
    • Applications and Use Cases of AI Agents
    • Understanding the workflow of AI agents
    • What are AI agents made of? 
  • Project: Agents for Amazon Bedrock (AWS)
  • Components of Bedrock Agents 
  • Foundation model 
  • Instructions 
  • Action groups 
  • Knowledge bases for AI Agents 
  • Guardrails for Amazon Bedrock 
  • Getting started with Amazon Bedrock Agents 

 

  • Building AI Agents using Gemini API (GCP) 
  • Project: Building AI Workflows with LangChain 
  • Creating an automated essay-writing pipeline 
  • Integrating LLMs, prompts, and web search 
  • Using LLM Chain, Chat Prompt Template, and StrOutputParser 
  • Implementing LangChain Expression Language (LCEL) for task automation 
  • Implementing structured data validation with Pydantic 
  • Using LLM Chain, Chat Prompt Template, and StrOutput Parser 
  • Handling real-time information retrieval using Tavily API 
  • Iterative AI Agent with LangGraph
  • Deploying and Scaling AI Agents 
  • Debugging AI agent issues in LangGraph and LangChain 
  • Deploying AI Agents on Vertex AI 

 

  • Project: Azure AI Agents 
  • Building AI Agents with Azure 
  • Understanding AIProjectClient for managing AI workflows 
  • Managing AI Conversations 
  • Enhancing AI Agents with Tools 
  • Code Interpreter Tool: Performing calculations and analyzing datasets 
  • File Search Tool: Searching documents and extracting insights 
  • Bing Grounding Tool: Fetching real-time search results 
  • Azure AI Search Tool: Connecting AI Agents to a structured search index 
  • Using AI for Data Search and Retrieval 
  • Setting up Azure AI Search for indexing documents 
  • Creating and managing Vector Stores for AI-driven search 
  • AI Search Integration for Real-time Information 
  • Deploying AI Agents in Production 
  • Advanced AI Agent Customization

 

  • Project: Google Agent Development Kit
  • Core Agent Categories 
  • LLM Agents 
  • Workflow Agents 
  • Custom Agents 
  • Multi-Agent Systems in ADK ○ ADK Tool 
  • Function Tools 
  • Built-in Tools 
  • Third-Party Tools 
  • Integrating Model Context Protocol (MCP) with ADK 
  • Deploying Your Agent 

 

  • Project: Agent2Agent (A2A) 
  • Benefits of Using A2A 
  • Key Design Principles of A2A 
  • The A2A Solution 
  • A2A and MCP 
  • How A2A and MCP Work Together 
  • Agent Discovery in A2A 

 

  • Project: Model Context Protocol (MCP) 
  • The Architecture of MCP 
  • MCP Servers 
  • MCP Clients 
  • MCP Hosts 
  • Local Data Sources 
  • Remote Services 
  • MCP Ecosystem and Adoption 

 

  • Project: Introduction to Multi-Agent Systems 
  • What are Multi-AI Agents? 
  • Real-world Applications of Multi-Agent Systems 
  • Overview of LangGraph for Multi-Agent Orchestration 
  • Benefits of Multi-Agent Architecture 

 

  • Other Agent framework Auto Gen, CrewAI and Semantic kernel 

 

Module 7: Monitoring and performance Evaluation 

 

  • Project: Observability in Azure AI foundry 
  • Project: Cloud-Based Model Evaluation using AIProjectClient 
    • Observability & Tracing in Azure AI 
    • Azure Monitor & Application Insights 
    • Best Practices for AI Model Monitoring 
  • Project: LLM Evaluation & Testing with Evidently AI 
  • Evaluate and test your LLM use case 
  • Create and evaluate an LLM judge
  • Run regression testing for LLM outputs.

 

  • Project: MLFlow for LLM Evaluation 
  • Model Evaluation in MLFlow 
  • Heuristic-Based Evaluation Metrics 
  • LLM-as-a-Judge Evaluation Metrics 
  • Custom LLM Evaluation Metrics 

 

  • AWS Bedrock for LLM and RAG Evaluation 
  • BLEU, ROUGE, METEOR, and BERT Score for assessing text quality
  • Evaluate AI Agents 
  • Preparing for Agent Evaluations 
  • How Evaluation works with the ADK 

 

  • Retrieval-augmented Generation (RAG) evaluation 
  • Evaluating Retrieval Systems on cloud 
  • RAG Evaluation with MLflow 

 

Module 8: Ethics and Deployment in Generative AI 

 

  • Responsible AI 
  • What is responsible AI 
  • Challenges of responsible AI 
  • Amazon services and tools for responsible AI 
  • Building AI responsibly at AWS 
  • Core dimensions of responsible AI 
  • Project: Implementing safeguards in generative AI 
  • Amazon Bedrock Guardrails 
  • Azure Responsible AI capabilities 
  • Google Cloud’s approach to responsible AI 

 

  • MLOps for LLM’s (LLMOps) 
  • What is LLM? 
  • MLOps for LLM’s 
  • FMOps/LLMOps: Operationalize generative AI 
  • LLM System Design 
  • High-level view LLM-driven application 
  • LLMOps Pipeline 

 

  • Enterprise-Ready Features for A2A Agents 
  • Transport Level Security (TLS) 
  • Authentication 
  • Authorization 
  • Data Privacy and Confidentiality 
  • Tracing, Observability, and Monitoring 
  • API Management and Governance 

 

Module 9: Developer focussed AI tools 

 

  • Project: Amazon Q for Developer 
  • Setting Up Amazon Q Developer 
  • Conversing with Amazon Q for Code Assistance 
  • Inline Code Suggestions with Amazon Q 
  • Code Transformation in the IDE Using Amazon Q 
  • Feature Development with Amazon Q 
  • Automated Unit Test Generation with Amazon Q 
  • Code Review with Amazon Q Developer 
  • Auto-Generated Documentation with Amazon Q 
  • Supported Languages for Amazon Q in IDE 

 

  • Project: GitHub Copilot 
  • Best Practices for GitHub Copilot 
  • Automating Tests & Repetitive Code with Copilot 
  • Debugging & Fixing Syntax Errors Using Copilot 
  • Generating Code Explanations & Comments with Copilot 
  • Creating Regular Expressions with Copilot 
  • AI-Powered Code Completions with GitHub Copilot
  • Enhancing Code Reviews with GitHub Copilot 
  • Streamlining Pull Requests with Copilot Assistance 

 

  • Other developer focused AI tools 
  • Project: Cursor 
  • Windsurf 
  • Replit 
Fee: Rs 7,499 + 18% GST
100% subsidized cost for Naveen Jindal Foundation registered students

or Click here to Register

Enquiry Form
close slider











    Please prove you are human by selecting the star.